The novel coronavirus is bringing societies worldwide to a halt and causing widespread health impacts. Still, there appears to be a paucity of information how the crisis is likely to unfold in the near future. Most news outlets only show aggreate numbers, color-coded world maps, or descriptive statistics of the current situation.
This workbook is part of a daily series, in which I am taking a closer look at numbers and trends, and making some tentative projections. All data are taken from the Johns Hopkins Covid-19 dataset on GitHub. Each day, Johns Hopkins update the dataset with figures for the previous day. Numbers are pulled live when running the workbook.
All projections are based on curve fitting on a per-country level. Thus, they extrapolate current trends. By nature, they can neither reflect the impact of recently enacted measures, which are expected to reduce infection rates, nor can they reflect new adverse developments. So please take everything with a grain of salt.
Please stay safe, look after your loved ones, and stay healthy.
# Hide raw notebook code in exported HTML
from IPython.display import HTML
HTML('''<script>
code_show=true;
function code_toggle() {
if (code_show) {
$('div.input').hide();
} else {
$('div.input').show();
}
code_show = !code_show
}
$(document).ready(code_toggle);
</script>
<form"><input type="button" value="Show/hide code" onclick="code_toggle()"></input></form>
<!-- Global site tag (gtag.js) - Google Analytics -->
<script async src="https://www.googletagmanager.com/gtag/js?id=UA-161715363-1"></script>
<script>
window.dataLayer = window.dataLayer || [];
function gtag(){dataLayer.push(arguments);}
gtag('js', new Date());
gtag('config', 'UA-161715363-1');
</script>
''')
As of March 23rd end of day, there were 379k confirmed cases of Covid-19 globally, and this figure continues to grow at 12.3% per day. Yesterday's reduction to 10% unfortunately appears to have been a temporary dip, possibly driven by weekend inconsistencies in reporting.
17k people have died from this illness. At 12.7% per day, are growing roughly in line with new cases.
Johns Hopkins has stopped providing a time series for recoveries, so this data is no longer available here. Please note there were numerous inconsistencies with recoveries before, as legal reporting requirements per country differed widely, and in some countries, only new cases and deaths are tracked consistently.
# Import required libraries
import pandas as pd
from pandas.plotting import register_matplotlib_converters
register_matplotlib_converters()
import numpy as np
from scipy.optimize import curve_fit
from scipy.special import expit
import matplotlib.pyplot as plt
import matplotlib.ticker as plticker
import matplotlib.dates as mdates
import datetime as datetime
import operator
import sys
# Load data and group by country/region
def loadAndGroup(fileName, groupBy="Country/Region"):
df=pd.read_csv(fileName)
df=df.groupby(groupBy).sum()
return df
# Load data
confd =loadAndGroup('https://raw.githubusercontent.com/CSSEGISandData/COVID-19/master/csse_covid_19_data/csse_covid_19_time_series/time_series_covid19_confirmed_global.csv')
#recovd=loadAndGroup('https://raw.githubusercontent.com/CSSEGISandData/COVID-19/master/csse_covid_19_data/csse_covid_19_time_series/time_series_19-covid-Recovered.csv')
deaths=loadAndGroup('https://raw.githubusercontent.com/CSSEGISandData/COVID-19/master/csse_covid_19_data/csse_covid_19_time_series/time_series_covid19_deaths_global.csv')
population=loadAndGroup('./population.csv','Country')
today =confd.columns[-1]
# Calculate new, previous and total as well as growth rate from time series
def newPrevTotalGrowth(df):
df1 =df.loc[:, df.columns[-2]:]
prev, total=df1.sum(axis=0)
delta =total-prev
return delta, prev, total, delta/prev if prev!=0 else 0
# Calculate overall data sets for overview plots
confdNew, confdPrev, confdTotal, confdGrowth =newPrevTotalGrowth(confd)
#recovdNew, recovdPrev, recovdTotal, recovdGrowth=newPrevTotalGrowth(recovd)
deathsNew, deathsPrev, deathsTotal, deathsGrowth=newPrevTotalGrowth(deaths)
#closedNew, closedPrev, closedTotal=recovdNew+deathsNew, recovdPrev+deathsPrev, recovdTotal+deathsTotal
#closedGrowth=closedNew/closedPrev if closedPrev!=0 else 0
#activeNew, activePrev, activeTotal=confdNew-closedNew, confdPrev-closedPrev, confdTotal-closedTotal
#activeGrowth=activeNew/activePrev if activePrev!=0 else 0
labels=['Confirmed', 'Deaths']
valuesTotal=[confdTotal, deathsTotal]
valuesNew=[confdNew, deathsNew]
valuesPrev=[confdPrev, deathsPrev]
valuesPerc=[1, deathsTotal/confdTotal]
valuesGrowth=[confdGrowth, deathsGrowth]
#labels=['Confirmed', 'Active', 'Closed', 'Recovered', 'Deaths']
#valuesTotal=[confdTotal, activeTotal, closedTotal, recovdTotal, deathsTotal]
#valuesNew=[confdNew, activeNew, closedNew, recovdNew, deathsNew]
#valuesPrev=[confdPrev, activePrev, closedPrev, recovdPrev, deathsPrev]
#valuesPerc=[1, activeTotal/confdTotal, closedTotal/confdTotal, recovdTotal/confdTotal, deathsTotal/confdTotal]
#valuesGrowth=[confdGrowth, activeGrowth, closedGrowth, recovdGrowth, deathsGrowth]
# Prepare overview plot
plt.rcParams['figure.figsize'] = [15, 3]
fig, ax=plt.subplots(nrows=1, ncols=3, constrained_layout=True)
fig.suptitle('Covid-19 Global Overview as of %s' % today, fontsize="16")
# Human readable formatting for figures ranging in single digits, thousands, millions and billions
def humanReadable(x):
if x<0:
return "-"+humanReadable(-x)
formats=[ (10000000000, 1000000000,"%.0fb"), (1000000000,1000000000, "%.1fb"), (10000000, 1000000, "%.0fm"),
(1000000, 1000000, "%.1fm"), (10000,1000,"%.0fk"), (1000,1000,"%.1fk") ]
for threshold, divider, formatString in formats:
if x>=threshold:
return formatString % (x/divider)
return "%d" % x
@plticker.FuncFormatter
def hrFormatter(x, pos):
return humanReadable(x)
# Left side: case counts
ax[0].set_title('Absolute case counts')
#ax[0].get_yaxis().set_visible(False)
#ax2 = ax[0].twinx()
ax[0].invert_yaxis()
#ax2.invert_xaxis()
ax[0].xaxis.set_major_formatter(hrFormatter)
ax[0].barh(labels, valuesTotal)
for i, v in enumerate(valuesTotal):
ax[0].text(v, i, humanReadable(v), ha='left', va='center', color='k', bbox=dict(boxstyle='square,pad=0', fc='w', ec='none'), backgroundcolor='w')
# Middle: Growth rates
ax[1].set_title('Daily growth rates')
ax[1].invert_yaxis()
ax[1].get_yaxis().set_visible(False)
ax[1].xaxis.set_major_formatter(plticker.PercentFormatter(1.0))
ax[1].barh(labels, valuesGrowth)
for i, v in enumerate(zip(valuesGrowth, valuesNew)):
ax[1].text(v[0]/2, i, "+"+humanReadable(v[1]), ha='center', va='center', color='w')
for i, v in enumerate(valuesGrowth):
ax[1].text(v, i, " %.1f%%" % (v*100), ha='left', va='center', bbox=dict(boxstyle='square,pad=0', fc='w', ec='none'), backgroundcolor='w')
# Right: Percentages
ax[2].set_title('Share of confirmed cases')
ax[2].invert_yaxis()
ax[2].get_yaxis().set_visible(False)
ax[2].xaxis.set_major_formatter(plticker.PercentFormatter(1.0))
ax[2].barh(labels, valuesPerc)
for i, v in enumerate(valuesPerc):
ax[2].text(v, i, " %.1f%%" % (v*100), ha='left', va='center', bbox=dict(boxstyle='square,pad=0', fc='w', ec='none'), backgroundcolor='w')
On a global level, exponential growth appears to continue unabated. The first exponential growth wave in China plateaued in mid-February. Since then, the global spread of the disease has launched a second exponential growth wave of significantly higher magnitude.
# Aggregate time series data on global level
globalConfd=confd.loc[:, confd.columns[2]:].sum(axis=0)
#globalRecovd=recovd.loc[:, confd.columns[2]:].sum(axis=0)
globalDeaths=deaths.loc[:, confd.columns[2]:].sum(axis=0)
#globalClosed=globalRecovd+globalDeaths
#globalActive=globalConfd-globalClosed
globalDF=pd.DataFrame({
'Deaths':globalDeaths,
# 'Active':globalActive,
# 'Recovered':globalRecovd,
'Confirmed':globalConfd
})
# Prepare stacked area plot
fig = plt.figure(figsize=(15, 8))
ax = fig.add_subplot(1, 1, 1)
#colors=['r', 'orange', 'g']
colors=['r', 'orange']
globalDF.plot(ax=ax, kind='area', stacked=False, color=colors)
ax.set_title("Global Cases over Time, as of %s" % today, fontsize=16)
ax.set_ylabel("Number of cases")
ax.yaxis.set_major_formatter(hrFormatter)
ax.get_legend().remove()
# Plot and label the values
xPos=len(globalConfd.index)-1
x=globalConfd.index[xPos]
c, r, d, a, cl=globalConfd[x], globalRecovd[x], globalDeaths[x], globalActive[x], globalClosed[x]
ax.text(xPos+0.25, d, " %s deaths" % humanReadable(d), ha='left', va='center', c='r', bbox=dict(boxstyle='square,pad=0', fc='w', ec='none'))
#ax.text(xPos, d+a/2, " %s active" % humanReadable(a), ha='left', va='center', c='orange')
#ax.text(xPos, d+a+r/2, " %s recovered" % humanReadable(r), ha='left', va='center', c='g')
ax.text(xPos+00.25, c, " %s confirmed" % humanReadable(c), ha='left', va='center', c='k', bbox=dict(boxstyle='square,pad=0', fc='w', ec='none'))
plt.show()
Unfortunately, the dip in absolute daily case growth on March 20th-22nd appears to be temporary only. It now looks likely this was caused by incomplete data capture due to the weekend. Prior dates like March 12th and 13th have also seen dips in growth rate followed by corrections the subsequent day.
# Calculate daily deltas
globalConfdDelta=globalConfd.diff()
#globalRecovdDelta=-globalRecovd.diff()
globalDeathsDelta=globalDeaths.diff()
globalDFDelta=pd.DataFrame({
'DeathsDelta':globalDeathsDelta,
# 'RecoveredDelta':globalRecovdDelta,
'ConfirmedDelta':globalConfdDelta
})
# Prepare stacked area plot
fig = plt.figure(figsize=(15, 8))
ax = fig.add_subplot(1, 1, 1)
#colors=['r', 'g', 'orange' ]
colors=['r', 'orange' ]
globalDFDelta.plot(ax=ax, kind='area', stacked=False, color=colors)
ax.set_title("Daily change in global cases over Time, as of %s" % today, fontsize=16)
ax.set_ylabel("Growth in number of cases")
ax.yaxis.set_major_formatter(hrFormatter)
ax.get_legend().remove()
# Plot and label the values
xPos=len(globalConfd.index)-1
x=globalConfd.index[xPos]
c, r, d=globalConfdDelta[x], globalRecovdDelta[x], globalDeathsDelta[x]
ax.text(xPos+0.25, d, " %s new deaths" % humanReadable(d), ha='left', va='center', c='r', bbox=dict(boxstyle='square,pad=0', fc='w', ec='none'))
#ax.text(xPos, r+d, " %s new recovered" % humanReadable(r), ha='left', va='center', c='g')
ax.text(xPos+0.25, c, " %s new confirmed" % humanReadable(c), ha='left', va='center', c='orange', bbox=dict(boxstyle='square,pad=0', fc='w', ec='none'))
plt.show()
Percentage growth figures are currently similar for new cases and deaths in the 12-13% range globally.
# Calculate daily deltas
globalConfdDeltaPerc=globalConfdDelta/globalConfd.shift(periods=1)
#globalRecovdDeltaPerc=-globalRecovdDelta/globalRecovd.shift(periods=1)
globalDeathsDeltaPerc=globalDeathsDelta/globalDeaths.shift(periods=1)
globalDFDeltaPerc=pd.DataFrame({
'DeathsDeltaPerc':globalDeathsDeltaPerc,
# 'RecoveredDeltaPerc':globalRecovdDeltaPerc,
'ConfirmedDeltaPerc':globalConfdDeltaPerc
})
# Prepare stacked area plot
fig = plt.figure(figsize=(15, 8))
ax = fig.add_subplot(1, 1, 1)
#colors=['r', 'g', 'orange' ]
colors=['r', 'orange' ]
globalDFDeltaPerc.plot(ax=ax, kind='line', stacked=False, color=colors)
ax.set_title("Daily Percentage Change in Global Cases over Time, as of %s" % today, fontsize=16)
ax.yaxis.set_major_formatter(plticker.PercentFormatter(1.0))
ax.get_legend().remove()
# Plot and label the values
xPos=len(globalConfd.index)-1
x=globalConfd.index[xPos]
c, r, d=globalConfdDeltaPerc[x], globalRecovdDeltaPerc[x], globalDeathsDeltaPerc[x]
ax.text(xPos+0.25, d+0.02, " %.1f%% new deaths" % (d*100), ha='left', va='center', c='r', bbox=dict(boxstyle='square,pad=0', fc='w', ec='none'))
#ax.text(xPos, r, " %.1f%% new recovered" % (r*100), ha='left', va='center', c='g')
ax.text(xPos+0.25, c-0.02, " %.1f%% new confirmed" % (c*100), ha='left', va='center', c='orange', bbox=dict(boxstyle='square,pad=0', fc='w', ec='none'))
plt.show()
China continues to have the most cases, however, case growth in China appears no longer material. The number of cases in Italy, the US, Spain and Germany exceeds Iran.
Among larger western countries, the US and Canada stand out with a 32% and 42% growth rate, respectively. Growth rates in Germany are reported back at 17%, up from the seemingly weekend reporting-induced dip to 12%, but still significantly down from 30% at the end of the prior working week. This may be an early indication that heavier social distancing measures including school and university closures are beginning to have impact.
In the same group, Italy and Switzerland continue to have the highest number of cases per capita, a proxy for the highest infection risk from social interaction. Spain has the next highest case incidence per capita.
Case fatality rates (CFR), measured as number of deaths per number of confirmed cases, remain highest in Italy with 9-10% (slightly up) and Iran with 8%, possibly due to overwhelmed health systems. Spain stands at 6-7%. China, France, the UK, the Netherlands and Japan are in the 4-5% range, up from 3.5-5% yesterday. CFR in Germany remains at 0.4%.
def lastGrowth(data):
if len(data)>=2 and data[-2]>0:
return data[-1]/data[-2]-1
return 0
# Calculate summary stats for all countries with number of cases above the threshold
threshold=100
validCountries=[]
for name in confd.index.values:
conf1=confd.loc[name, confd.columns[2]:] # select row for given country, filter out lat/lon columns
confv=conf1.to_numpy()
if confv[-1]>=threshold:
#recovd1=recovd.loc[name, confd.columns[2]:]
#recovdv=recovd1.to_numpy()
death1=deaths.loc[name, confd.columns[2]:]
deathv=death1.to_numpy()
summary={
'Name':name,
'Cases':confv[-1],
'CaseGrowth':lastGrowth(confv),
#'Recovered':recovdv[-1],
#'RecoveredGrowth':lastGrowth(recovdv),
'Deaths':deathv[-1],
'DeathsGrowth':lastGrowth(deathv),
'CFRTotal':deathv[-1]/confv[-1],
'CFROutcome':deathv[-1]/(deathv[-1] + recovdv[-1]) if deathv[-1]+recovdv[-1]>0 else 0,
}
validCountries.append(summary)
# Prepare sorted stats
validCountries.sort(key=lambda x: x['Cases'], reverse=True)
# Prepare data for plots
countryNames=[x['Name'] for x in validCountries]
countryCases=[x['Cases'] for x in validCountries]
countryGrowth=[x['CaseGrowth'] for x in validCountries]
countryCFRTotal=[x['CFRTotal'] for x in validCountries]
#countryCFROutcome=[x['CFROutcome'] for x in validCountries]
countryPop1000=[population.loc[x]['PopulationInThousands'] for x in countryNames]
countryCasesPerPop1000=[cases/pop if pop!=0 else 0 for cases, pop in zip(countryCases, countryPop1000)]
# Prepare overview plot
plt.rcParams['figure.figsize'] = [15, 20]
fig, ax=plt.subplots(nrows=1, ncols=4, constrained_layout=True)
fig.suptitle('Covid-19 Country Overview as of %s' % today, fontsize="16")
# Left hand side: Plot lastest confirmed cases by country
ax[0].set_xscale('log')
ax[0].set_title('Confirmed cases (log scale)')
ax[0].get_yaxis().set_visible(False)
ax2 = ax[0].twinx()
ax2.invert_yaxis()
ax2.invert_xaxis()
ax2.xaxis.set_major_formatter(hrFormatter)
ax2.margins(0.015)
ax2.barh(countryNames, countryCases)
for i, v in enumerate(countryCases):
ax2.text(v, i, "%s " % humanReadable(v), ha='right', va='center', bbox=dict(boxstyle='square,pad=0', fc='w', ec='none'))
# Middle left: Plot latest growth rate by country
ax[1].set_title('Daily case growth rate')
ax[1].invert_yaxis()
ax[1].get_yaxis().set_visible(False)
ax[1].xaxis.set_major_formatter(plticker.PercentFormatter(1.0))
ax[1].margins(0.015)
ax[1].barh(countryNames, countryGrowth)
for i, v in enumerate(countryGrowth):
ax[1].text(v, i, " %.1f%%" % (v*100), ha='left', va='center', bbox=dict(boxstyle='square,pad=0', fc='w', ec='none'))
# Middle right: Plot cases per 1000 population
ax[2].set_title('Cases per 100k inhabitants')
ax[2].invert_yaxis()
ax[2].get_yaxis().set_visible(False)
ax[2].xaxis.set_major_formatter(plticker.PercentFormatter(1.0))
ax[2].margins(0.015)
ax[2].barh(countryNames, countryCasesPerPop1000)
for i, v in enumerate(countryCasesPerPop1000):
ax[2].text(v, i, " %.1f" % (v*100), ha='left', va='center', bbox=dict(boxstyle='square,pad=0', fc='w', ec='none'))
line =ax[1].axvline(x=confdGrowth, ymin=0, ymax=len(countryNames), ls="--")
ax[1].text(confdGrowth, -1, " \u2300 %.1f%%" % (confdGrowth*100), ha='left', va='center', color=line.get_color())
# Right: Plot CFR by country
ax[3].set_title('Case fatality rate')
ax[3].invert_yaxis()
ax[3].get_yaxis().set_visible(False)
ax[3].xaxis.set_major_formatter(plticker.PercentFormatter(1.0))
ax[3].axvline(x=0, ymin=0, ymax=len(countryNames), color='k', ls='-', lw='.8')
ax[3].margins(0.015)
ax[3].barh(countryNames, countryCFRTotal)
for i, v in enumerate(countryCFRTotal):
if v!=0:
ax[3].text(v, i, " %.1f%% " % (v*100), ha='left', va='center', bbox=dict(boxstyle='square,pad=0', fc='w', ec='none'))
plt.show()
Case fatality rate (CFR) is calculated as deaths/total confirmed cases. This is likely to be an understatement of the true value, as the outcome of currently active cases is still open. Alternative CFR measures like deaths/(deaths+recovered) lead to outlier results for many countries, as recovery appears to take longer and data capture about recovery tends to be less strict than about deaths. As Johns Hopkins has stopped updating recovery time series, providing that indicator is no longer possible.
The chart shows the growth of confirmed cases by country. To developments more comparable across countries, each country curve is shifted in time so that day 0 corresponds to the moment when that country exceeds a threshold number of confirmed cases (here=100).
From reported numbers, containment and mitigation appear to be most effective in China, South Korea, Singapore and Japan. Iran appears to be flattening. Norway and Sweden also appear to be growing less rapidly. Most major western countries still continue to follow the frightening trajectory of Italy.
# Retrieve data for one country from the data frame
def getData(df, name):
df1 =df.loc[name, df.columns[2]:]
days =df1.index.values
days =[datetime.datetime.strptime(d,"%m/%d/%y").date() for d in days]
daynr =range(1, len(days)+1)
values=df1.to_numpy()
return days, daynr, values
# Crop away starting values < n from the arrays
def startAtN(values, n):
while(len(values)>0 and values[0]<n):
values=values[1:]
return values
fig = plt.figure(figsize=(15, 10))
ax = fig.add_subplot(1, 1, 1)
threshold=100
ax.set_title("Confirmed cases by country, as of %s" % today, fontsize=16)
ax.set_xlabel("Days since country reached %s cases" % humanReadable(threshold))
ax.set_ylabel("Confirmed cases (log scale)")
ax.set_yscale('log')
ax.yaxis.set_major_formatter(hrFormatter)
# Plot individual country curves
maxLen=0
for i, cty in enumerate(validCountries, start=0):
name=cty['Name']
days, daynr, values=getData(confd, name)
shiftedValues=startAtN(values, threshold)
if(len(shiftedValues)>maxLen):
maxLen=len(shiftedValues)
line, =ax.plot(range(0, len(shiftedValues)), shiftedValues)
c=line.get_color()
ax.text(len(shiftedValues)-1, shiftedValues[-1], name, color=c)
# Plot an exponential growth line with given start value and factor
def plotFactor(ax, start,factor,length):
xs=range(0, length)
ys=[start]
while(len(ys)<length):
ys.append(factor*ys[-1])
line, =ax.plot(xs, ys,"--k")
c=line.get_color()
ax.text(xs[-1], ys[-1], "%.1f%% daily growth" % (factor*100-100), color=c)
# Plot the average growth line
plotFactor(ax,threshold, 1+confdGrowth, maxLen//2)
plt.show()
To project current trends, we try and fit both an exponential function, which grows without bound, and a sigmoid function, which flattens out again. We then select the curve with the lowest mean square error. Such projections should be taken with a grain of salt. The difference between exponential and sigmoid growth can be substantial over a few week's time. So slight differences in measurement noise may lead to significantly different outcomes.
Given large day-to-day swings in projections further than a week out, I am restricting predictions to a single week for now. I have added confidence ranges to the detailed country charts in the next section to reflect this.
If ongoing mitigations do not materially change the course of the disease, one week from now, Italy, Spain, Germany and the US would significantly overtake China in terms of confirmed cases.
Fingers crossed that social distancing is going to further reduce infection rates strongly.
# Exponential model for fitting
def fitExp(x, a, b):
return a*np.exp(b*x)
# Sigmoid model for fitting
def fitSig(t, iMax, alpha, tMid):
return iMax/(1.0+np.exp(-alpha*(t - tMid)))
#def fitSig(x, a, b, c):
# return a/(1.0+np.exp(-b*x - c))
def s3(x):
return np.around(x,decimals=3)
def cropDuplicateLeadingZeros(daynr, values):
while(len(daynr)>1 and values[1]<=0):
daynr, values=daynr[1:], values[1:]
return daynr, values
def extendTime(days, daynr, extraDays):
for i in range(0, extraDays):
days=np.append(days,days[-1]+datetime.timedelta(days=1))
daynr=np.append(daynr, daynr[-1]+1)
return days, daynr
# Fit given curve to the given data
def fitCurve(cropDaynr, cropValues, fitFunc, p0, eqFormatter):
try:
# fit curve
popt, pcov=curve_fit(fitFunc, cropDaynr, cropValues, p0)
# estimate error
cropProj=fitFunc(cropDaynr, *popt) # estimate error
sqdiff=np.sum((cropValues-cropProj)**2)
# generate label for chart
equation=eqFormatter(popt)
if(len(cropProj)>=2 and cropProj[len(cropProj)-2]!=0):
growthRate=cropProj[len(cropProj)-1]/cropProj[len(cropProj)-2]-1
else:
growthRate=0
fitLabel="%s\n%.2fx daily growth" % (equation, growthRate)
return popt, pcov, sqdiff, fitLabel
except (RuntimeError, TypeError) as e:
return [], [], sys.float_info.max, ""
# Fit multiple functions to the curve, return the fit with the lowest square error
def fitCurves(daynr, values):
bestFitFunc, bestPopt, bestPcov, bestSqdiff, bestFitLabel=[], [], [], sys.float_info.max, ""
if values[-1]>1:
# Fit on reduced dataset without leading zeros
cropDaynr, cropValues=cropDuplicateLeadingZeros(daynr, values)
fittings=[
[ fitExp, [0.1, 0.1], lambda popt: "f(x)=%g e^(%g x)" % (s3(popt[0]), s3(popt[1])) ],
[ fitSig, [values[-1], 0.1, -10], lambda popt: "f(x)=%g /(1- e^(\n- %g x %+g))" % (s3(popt[0]), s3(popt[1]), s3(popt[2])) ]
]
# Perform and evaluate curve fits
for fitFunc, p0, eqFormatter in fittings:
popt, pcov, sqdiff, fitLabel=fitCurve(cropDaynr, cropValues, fitFunc, p0, eqFormatter)
if sqdiff<bestSqdiff:
bestFitFunc, bestPopt, bestPcov, bestSqdiff, bestFitLabel=fitFunc, popt, pcov, sqdiff, fitLabel
return bestFitFunc, bestPopt, bestPcov, bestSqdiff, bestFitLabel
# Fit curve for the top K valid countries
topK=20
extDayCount=21
confdFits, deathsFits={}, {}
#confdFits, recovdFits, deathsFits={}, {}, {}
confdProj7, confdProj14, confdProj21=[], [], []
np.seterr(over='ignore')
for i, cty in enumerate(validCountries[0:topK], start=0):
name=cty['Name']
days, daynr, values=getData(confd, name)
confdFits[name]=fitCurves(daynr, values)
fitFunc, fitPopt, fitPcov, fitSqdiff, fitLabel=confdFits[name]
extDays, extDaynr=extendTime(days, np.array(daynr), extDayCount)
proj=fitFunc(extDaynr, *fitPopt)
confdProj7.append(proj[len(daynr)-1+7])
confdProj14.append(proj[len(daynr)-1+14])
confdProj21.append(proj[len(daynr)-1+21])
#days, daynr, values=getData(recovd, name)
#recovdFits[name]=fitCurves(daynr, values)
days, daynr, values=getData(deaths, name)
deathsFits[name]=fitCurves(daynr, values)
# Plot overview of projections
plt.rcParams['figure.figsize'] = [15, 8]
fig, ax=plt.subplots(nrows=1, ncols=2, constrained_layout=True)
fig.suptitle('Covid-19 Projections by Country as of %s (log scale)' % today, fontsize="16")
# Leftmost chart: Plot lastest confirmed cases by country
ax[0].set_title('Today')
ax[0].get_yaxis().set_visible(False)
ax2 = ax[0].twinx()
ax2.invert_yaxis()
ax2.invert_xaxis()
ax2.set_xscale('log')
ax2.xaxis.set_major_formatter(hrFormatter)
ax2.margins(0.015)
ax2.barh(countryNames[:topK], countryCases[:topK])
for i, v in enumerate(countryCases[:topK]):
ax2.text(v, i, humanReadable(v), ha='right', va='center', bbox=dict(boxstyle='square,pad=0', fc='w', ec='none'))
# Subsequent charts: plot projections for some weeks out
for i, title, proj in [(1, "In one week", confdProj7)]: #, (2, "In two weeks", confdProj14), (3, "In three weeks", confdProj21)]:
ax[i].set_title(title)
ax[i].set_xscale('log')
ax[i].xaxis.set_major_formatter(hrFormatter)
ax[i].invert_yaxis()
ax[i].get_yaxis().set_visible(False)
ax[i].margins(0.015)
ax[i].barh(countryNames[:topK], proj)
for j, v in enumerate(proj):
ax[i].text(v, j, humanReadable(v), ha='left', va='center', bbox=dict(boxstyle='square,pad=0', fc='w', ec='none'))
# Ensure all charts are drawn to the same scale
low, high=ax[-1].get_xlim()
low=1000
ax2.set_xlim(xmin=high,xmax=low)
for i in range(1,1):
#for i in range(1,4):
ax[i].set_xlim(low, high)
Three charts per country: confirmed cases, recovered cases and deaths. Black dots show the actual values from Hopkins. The smooth lines have been fitted to the data, using the same curve fits as above. The dotted lines are two standard deviation bounds to the fitted data. The usual disclaimers about curve fits apply.
I have added a confidence range of +/- two standard deviations for each fitted curve parameter to the charts to reflect the uncertainty of curve fits. For the mathematically inclined, I'm using the square root of the diagonal of the covariance matrix to estimate standard deviations for each parameter individually; I am cavalierly neglecting the other parts of the covariance matrix which capture interdepdencies between the parameters. There clearly are limits to this two sigma approach: e.g., for some countries, the two sigma lower bound of the one week projection ends up lower than the already confirmed number of cases. So as always with projections, please take them with a grain of salt.
The curve for Korea continues to depart from both exponential and sigmoid growth functions. Please disregard for now; happy to have your suggestions for a better family of functions to fit.
# Plot the raw data and the fitted curve on the given axes
def plotRawAndCurve(days, daynr, values, fitFunc, fitPopt, fitPcov, fitSqdiff, fitLabel, ax, label, name, fitDrawingStyle, extDayCount, yScale='linear'):
# Plot raw data and label last data point
ax.set_yscale(yScale)
ax.plot(days, values, 'ko', label="%s in %s" % (label, name))
ax.text(days[-1], values[-1], "%s " % humanReadable(values[-1]), color='k', horizontalalignment="right", verticalalignment="bottom")
# Plot the best fit projection, if it exists
if fitSqdiff<sys.float_info.max:
extDays, extDaynr=extendTime(days, np.array(daynr), extDayCount)
# Calculate two standard deviations for each parameter individually
# For simplicity, we are taking the diagonal of the covariance matrix,
# i.e. the variances of each parameter with itself. The square root
# of that is one standard deviation.
pcov2Sigma=[2*np.sqrt(fitPcov[i][i]) for i in range(len(fitPopt))]
# Plot projected scenario
extProj=fitFunc(extDaynr, *fitPopt)
line, =ax.plot(extDays, extProj, fitDrawingStyle, label=fitLabel)
# Plot low and high charts first
poptLow=fitPopt-pcov2Sigma
extProjLow=fitFunc(extDaynr, *poptLow)
line, =ax.plot(extDays, extProjLow, "%s-" % fitDrawingStyle, label="2\u03A3 low")
ax.text(extDays[-1], extProjLow[-1], " %s" % humanReadable(extProjLow[-1]), color=line.get_color(), backgroundcolor='w', horizontalalignment="left", verticalalignment="center" )
poptHigh=fitPopt+pcov2Sigma
extProjHigh=fitFunc(extDaynr, *poptHigh)
line, =ax.plot(extDays, extProjHigh, "%s-" % fitDrawingStyle, label="2\u03A3 high")
ax.text(extDays[-1], extProjHigh[-1], " %s" % humanReadable(extProjHigh[-1]), color=line.get_color(), backgroundcolor='w', horizontalalignment="left", verticalalignment="center" )
# Label projected scenario last, so it appears on top
ax.text(extDays[-1], extProj[-1], " %s" % humanReadable(extProj[-1]), color=line.get_color(), backgroundcolor='w', horizontalalignment="left", verticalalignment="center" )
# Finish up the formatting
locator = mdates.AutoDateLocator(minticks=5, maxticks=10)
formatter = mdates.ConciseDateFormatter(locator)
ax.xaxis.set_major_locator(locator)
ax.xaxis.set_major_formatter(formatter)
ax.yaxis.set_major_formatter(hrFormatter)
ax.legend()
# Plot fits for the top K valid countries and given number of extension days
extDayCount=7
for i, cty in enumerate(validCountries[0:topK], start=0):
# Retrieve data and fit
name=cty['Name']
# Prepare plot area
plt.rcParams['figure.figsize'] = [15, 6]
fig, axs=plt.subplots(nrows=1, ncols=2, constrained_layout=True)
plt.suptitle('%s: Confirmed cases and deaths on %s with %d day prediction' % (name, today, extDayCount))
#fig, axs=plt.subplots(nrows=1, ncols=3, constrained_layout=True)
#plt.suptitle('%s: Confirmed cases, recovered and deaths on %s with %d day prediction' % (name, today, extDayCount))
# Select and plot data for this country
chartParams=[(confd, confdFits, axs[0], "Confirmed", "b-"), (deaths, deathsFits, axs[1], "Deaths", "r-")]
#chartParams=[(confd, confdFits, axs[0], "Confirmed", "b-"), (recovd, recovdFits, axs[1], "Recovered", "g-"), (deaths, deathsFits, axs[2], "Deaths", "r-")]
for df, fits, ax, legend, fitDrawingStyle in chartParams:
days, daynr, values=getData(df, name)
fitFunc, fitPopt, fitPcov, fitSqdiff, fitLabel=fits[name]
plotRawAndCurve(days, daynr, values, fitFunc, fitPopt, fitPcov, fitSqdiff, fitLabel, ax, legend, name, fitDrawingStyle, extDayCount, yScale='linear')
plt.show()
Return to daily series overview.
For questions and comments, please reach out to me on LinkedIn or Twitter.