# Hide raw notebook code in exported HTML
from IPython.display import HTML
HTML('''<script>
code_show=true;
function code_toggle() {
if (code_show) {
$('div.input').hide();
} else {
$('div.input').show();
}
code_show = !code_show
}
$(document).ready(code_toggle);
</script>
<form><input type="button" value="Return home" onclick="location.href='https://mlnoga.github.io/covid19-analysis/'"></input>
<input type="button" value="Show/hide code" onclick="code_toggle()"></input></form>
<!-- Global site tag (gtag.js) - Google Analytics -->
<script async src="https://www.googletagmanager.com/gtag/js?id=UA-161715363-1"></script>
<script>
window.dataLayer = window.dataLayer || [];
function gtag(){dataLayer.push(arguments);}
gtag('js', new Date());
gtag('config', 'UA-161715363-1');
</script>
''')
On the global level, with some 1.9m cumulative cases, the momentum of the pandemic appears to be slowing for now. +3.8% new cases and +4.7% new deaths are the lowest growth rates since a long time. The crude case fatality ratio (CFR) continues to creep up to now 6.2%. Crude CFR measures the number of cumulative deaths, divided by the cumulative number of cases.
# Import required libraries
###########################
import numpy as np
from scipy import stats
from scipy.optimize import curve_fit
from scipy.optimize import OptimizeWarning
from scipy.special import expit
import pandas as pd
from pandas.plotting import register_matplotlib_converters
register_matplotlib_converters()
import matplotlib.pyplot as plt
import matplotlib.ticker as plticker
import matplotlib.dates as mdates
import matplotlib.patches as mpatches
import datetime as datetime
import operator
import sys
import warnings
import math
# Data management
#################
# Load data, drop unneeded lat/long columns and group by country/region
def loadAndGroup(fileName, groupBy="Country/Region", dropColumns=["Lat", "Long"]):
df=pd.read_csv(fileName)
for dc in dropColumns:
df.drop(dc, axis=1, inplace=True)
df=df.groupby(groupBy).sum()
return df
# Retrieve data for one country from the data frame
def getData(df, name):
df1 =df.loc[name]
days =df1.index.values
days =[datetime.datetime.strptime(d,"%m/%d/%y").date() for d in days]
daynr =np.array(range(len(days)))
values=df1.to_numpy()
return days, daynr, values
# Load data and calculate derived values: world totals, absolute daily deltas, percentage daily deltas
useLiveGit =True
if useLiveGit:
confd =loadAndGroup('https://raw.githubusercontent.com/CSSEGISandData/COVID-19/master/csse_covid_19_data/csse_covid_19_time_series/time_series_covid19_confirmed_global.csv')
else:
confd =loadAndGroup('./COVID-19/csse_covid_19_data/csse_covid_19_time_series/time_series_covid19_confirmed_global.csv')
confd =confd.append(confd.sum(axis=0).rename('World'))
confdDelta =confd.diff(axis=1).replace(np.nan, 0)
confdDeltaPerc=(confdDelta/confd.shift(periods=1, axis=1)).replace(np.nan, 0).replace(np.inf, 0)
today =confd.columns[-1]
if useLiveGit:
deaths =loadAndGroup('https://raw.githubusercontent.com/CSSEGISandData/COVID-19/master/csse_covid_19_data/csse_covid_19_time_series/time_series_covid19_deaths_global.csv')
else:
deaths =loadAndGroup('./COVID-19/csse_covid_19_data/csse_covid_19_time_series/time_series_covid19_deaths_global.csv')
deaths =deaths.append(deaths.sum(axis=0).rename('World'))
deathsDelta =deaths.diff(axis=1).replace(np.nan, 0)
deathsDeltaPerc=(deathsDelta/deaths.shift(periods=1, axis=1)).replace(np.nan, 0).replace(np.inf, 0)
crudeCFR =deaths/confd
population=loadAndGroup('./population.csv','Country', dropColumns=[])
worldPopulation=population.sum(axis=0).rename("World")
population=population.append(worldPopulation)
# Calculate new, previous and total as well as growth rate from time series
def newPrevTotalGrowth(df):
df1 =df.loc[:, df.columns[-2]:]
prev, total=df1.sum(axis=0)
delta =total-prev
return delta, prev, total, delta/prev if prev!=0 else 0
# Calculate overall data sets for overview plots
confdNew, confdPrev, confdTotal, confdGrowth =newPrevTotalGrowth(confd)
deathsNew, deathsPrev, deathsTotal, deathsGrowth=newPrevTotalGrowth(deaths)
# Calculate last growth rate of a data series
def lastGrowth(data):
if len(data)>=2 and data[-2]>0:
return data[-1]/data[-2]-1
return 0
# Calculate daily increment of a data series
def diff(ys):
res=[0]
cur=ys[0]
for y in ys[1:]:
res.append(y-cur)
cur=y
return res
# Formatting
############
# Format to three significant digits
def s3(x):
return np.around(x,decimals=3)
# Human readable formatting for figures ranging in single digits, thousands, millions and billions
def humanReadable(x, plus=False):
if math.isnan(x):
return "NaN"
if x<0:
return "-"+humanReadable(-x, plus=False)
if plus:
return "+"+humanReadable(x, plus=False)
if x==0:
return "0"
formats=[ (10000000000, 1000000000,"%.0fb"), (1000000000,1000000000, "%.1fb"), (10000000, 1000000, "%.0fm"),
(1000000, 1000000, "%.1fm"), (10000,1000,"%.0fk"), (1000,1000,"%.1fk"), (10,1, "%d"), (0,1, "%.1f") ]
for threshold, divider, formatString in formats:
if x>=threshold:
return formatString % (x/divider)
@plticker.FuncFormatter
def hrFormatter(x, pos):
return humanReadable(x)
# Label last datapoint of a series
def labelLast(ax, x, y, c='tab:blue', va='center', weight='normal'):
if y[-1]>0:
ax.annotate(humanReadable(y[-1]), (x[-1],y[-1]), (2,0), textcoords='offset pixels', ha='left', va=va, c=c, weight=weight, bbox=dict(boxstyle='square,pad=0', fc='w', ec='none'))
# Adjust the lightness of a given color
def adjustLightness(color, amount=0.5):
import matplotlib.colors as mc
import colorsys
try:
c = mc.cnames[color]
except:
c = color
c = colorsys.rgb_to_hls(*mc.to_rgb(c))
return colorsys.hls_to_rgb(c[0], max(0, min(1, amount * c[1])), c[2])
# Global overview plot
######################
# Plot overview
fig, axs=plt.subplots(figsize=[15, 7], nrows=1, ncols=4, constrained_layout=True)
colors=['r', 'tab:blue']
# Left: Cases
ax=axs[0]
globalDF=pd.DataFrame({
'Deaths':deaths.loc['World',:],
'Cases':confd.loc['World',:]
})
globalDF.plot(ax=ax, kind='area', stacked=False, color=colors)
ax.set_title("Cumulative Covid-19 Cases, as of %s" % today, fontsize=12)
ax.yaxis.set_major_formatter(hrFormatter)
ax.get_legend().remove()
# Label the last values
xPos=len(confd.columns)-1
x, prevX=confd.columns[-1], confd.columns[-2]
c, prevC=confd.loc['World',x], confd.loc['World',prevX]
d, prevD=deaths.loc['World',x], deaths.loc['World',prevX]
ax.text(xPos+1, d, "%s\ndeaths\n(%s)" % (humanReadable(d), humanReadable(d-prevD, plus=True)), ha='left', va='center', c=colors[0], bbox=dict(boxstyle='square,pad=0', fc='w', ec='none'))
_=ax.text(xPos+1, c, "%s\ncases\n(%s)" % (humanReadable(c), humanReadable(c-prevC, plus=True)), ha='left', va='center', c=adjustLightness(colors[1]), bbox=dict(boxstyle='square,pad=0', fc='w', ec='none'))
# Mid-left: Absoulte growth
ax=axs[1]
globalDFDelta=pd.DataFrame({
'DeathsDelta':deathsDelta.loc['World',:],
'ConfirmedDelta':confdDelta.loc['World',:]
})
globalDFDelta.plot(ax=ax, kind='line', stacked=False, color=colors)
ax.set_title("New cases", fontsize=12)
ax.yaxis.set_major_formatter(hrFormatter)
ax.get_legend().remove()
# Label the last values
c, prevC=confdDelta.loc['World',x], confdDelta.loc['World',prevX]
d, prevD=deathsDelta.loc['World',x], deathsDelta.loc['World',prevX]
ax.text(xPos+1, d, "+%s\ndeaths\n(%s)" % (humanReadable(d), humanReadable(d-prevD, plus=True)), ha='left', va='center', c=colors[0], bbox=dict(boxstyle='square,pad=0', fc='w', ec='none'))
_=ax.text(xPos+1, c, "+%s\ncases\n(%s)" % (humanReadable(c), humanReadable(c-prevC, plus=True)), ha='left', va='center', c=adjustLightness(colors[1]), bbox=dict(boxstyle='square,pad=0', fc='w', ec='none'))
# Mid-right: Percentage growth
ax=axs[2]
globalDFDeltaPerc=pd.DataFrame({
'DeathsDeltaPerc':deathsDeltaPerc.loc['World',:],
'ConfirmedDeltaPerc':confdDeltaPerc.loc['World',:]
})
globalDFDeltaPerc.plot(ax=ax, kind='line', stacked=False, color=colors)
ax.set_title("Percent new cases", fontsize=12)
ax.yaxis.set_major_formatter(plticker.PercentFormatter(1.0))
ax.get_legend().remove()
# Label the last values
c, prevC=confdDeltaPerc.loc['World',x], confdDeltaPerc.loc['World',prevX]
d, prevD=deathsDeltaPerc.loc['World',x], deathsDeltaPerc.loc['World',prevX]
ax.text(xPos+1, d+0.02, "%+.1f%%\ndeaths\n(%+.1f\nppt)" % (d*100, (d-prevD)*100), ha='left', va='bottom', c=colors[0], bbox=dict(boxstyle='square,pad=0', fc='w', ec='none'))
_=ax.text(xPos+1, c-0.02, "%+.1f%%\ncases\n(%+.1f\nppt)" % (c*100, (c-prevC)*100), ha='left', va='top', c=adjustLightness(colors[1]), bbox=dict(boxstyle='square,pad=0', fc='w', ec='none'))
# Right: CFR
ax=axs[3]
globalDFCrudeCFR=pd.DataFrame({'Crude CFR':crudeCFR.loc['World',:]})
globalDFCrudeCFR.plot(ax=ax, kind='area', stacked=False, color=colors)
ax.set_title("Crude Case Fatality Ratio (CFR)", fontsize=12)
ax.yaxis.set_major_formatter(plticker.PercentFormatter(1.0))
ax.get_legend().remove()
# Label the last values
cfr, prevCfr=crudeCFR.loc['World',x], crudeCFR.loc['World',prevX]
ax.text(xPos+1, cfr, "%.1f%%\n(%+.2f\nppt)" % (cfr*100, (cfr-prevCfr)*100), ha='left', va='center', c=colors[0], bbox=dict(boxstyle='square,pad=0', fc='w', ec='none'))
plt.show()
With 581k cumulative cases, the US has the most infections worldwide, followed by Spain with 170k and Italy with 160k, as well as France with 150k and Germany with 140k. Percentage growth rates are highest in Russia with 16%, then Ireland and India with 10-14% followed by the US, the UK, Turkey, Canada and Brazil with 4.5-7%. Italy, Spain and France stand at 2-3%, Germany below 2% and Austria below 1%. All are trending down from yesterday. The UK and the US report 5-7%, most European countries are now at 2-2.5%. Among major western countries, Spain stands out with 363 cases per 100k population, followed by Switzerland with 296, and Belgium and Italy with 263.
The US stands at 24k deaths, with fatalities growing most quickly there. Italy has passed the 20k deaths mark. Spain and France have risen to 18k and 15k, respectively.
Crude case fatality rates (CFR), measured as number of fatal outcomes per number of confirmed cases, are around 12.7-12.8% in Italy, the UK and Belgium. Spain, France and the Netherlands are in the 10.5-11% range. The US stands at 4.1%, up 0.1ppt in line with their long term pattern. The comparatively low CFR in Germany went up 0.1 ppt to 2.5%, in a long term pattern of growth.
# Country overview plot
#######################
# Calculate summary stats for all countries with number of cases above the threshold
threshold=100
validCountries=[]
for name in confd.index.values:
confv=confd.loc[name, confd.columns[-1]]
if confv>=threshold:
summary={
'Name': name,
'Cases': confv,
'CaseGrowth': confdDeltaPerc .loc[name, confd.columns[-1]],
'Deaths': deaths .loc[name, confd.columns[-1]],
'DeathsGrowth':deathsDeltaPerc.loc[name, confd.columns[-1]],
'CrudeCFR': crudeCFR .loc[name, confd.columns[-1]]
}
validCountries.append(summary)
# Prepare sorted stats, and limit to top countries
validCountries.sort(key=lambda x: x['Cases'], reverse=True)
validCountriesForCharts=validCountries[:25]
# Prepare data for plots
countryNames=[x['Name'] for x in validCountriesForCharts]
countryCases=[x['Cases'] for x in validCountriesForCharts]
countryGrowth=[x['CaseGrowth'] for x in validCountriesForCharts]
countryDeaths=[x['Deaths'] for x in validCountriesForCharts]
countryCrudeCFR=[x['CrudeCFR'] for x in validCountriesForCharts]
countryPop1000=[population.loc[x]['PopulationInThousands'] for x in countryNames]
countryCasesPerPop1000=[cases/pop if pop!=0 else 0 for cases, pop in zip(countryCases, countryPop1000)]
# Prepare overview plot
fig, ax=plt.subplots(nrows=1, ncols=5, figsize=[15,8], constrained_layout=True)
fig.suptitle('Covid-19 Country Overview as of %s' % today, fontsize="16")
alternatingColorsCases=['tab:blue','lightblue']*int(len(countryNames)/2)
alternatingColorsDeaths=['darkred','#fa5858']*int(len(countryNames)/2)
# Left hand side: Plot lastest confirmed cases by country
ax[0].set_xscale('log')
ax[0].set_title('Confirmed cases (log scale)')
ax[0].get_yaxis().set_visible(False)
ax2 = ax[0].twinx()
ax2.invert_yaxis()
ax2.invert_xaxis()
ax2.xaxis.set_major_formatter(hrFormatter)
ax2.margins(0.015)
ax2.barh(countryNames, countryCases, color=alternatingColorsCases)
for i, v in enumerate(countryCases):
ax2.text(v, i, "%s " % humanReadable(v), ha='right', va='center', bbox=dict(boxstyle='square,pad=0', fc='w', ec='none'))
# Middle left: Plot latest growth rate by country
ax[1].set_title('Daily case growth rate')
ax[1].invert_yaxis()
ax[1].get_yaxis().set_visible(False)
ax[1].xaxis.set_major_formatter(plticker.PercentFormatter(1.0))
ax[1].margins(0.015)
ax[1].barh(countryNames, countryGrowth, color=alternatingColorsCases)
for i, v in enumerate(countryGrowth):
ax[1].text(v, i, " %.1f%%" % (v*100), ha='left', va='center', bbox=dict(boxstyle='square,pad=0', fc='w', ec='none'))
# Middle: Plot cases per 1000 population
ax[2].set_title('Cases per 100k inhabitants')
ax[2].invert_yaxis()
ax[2].get_yaxis().set_visible(False)
ax[2].xaxis.set_major_formatter(hrFormatter)
ax[2].margins(0.015)
countryCasesPerPop100k=np.array(countryCasesPerPop1000)*100
ax[2].barh(countryNames, countryCasesPerPop100k, color=alternatingColorsCases)
for i, v in enumerate(countryCasesPerPop100k):
ax[2].text(v, i, hrFormatter(v), ha='left', va='center', bbox=dict(boxstyle='square,pad=0', fc='w', ec='none'))
line =ax[1].axvline(x=confdGrowth, ymin=0, ymax=len(countryNames), ls="--")
#ax[1].text(confdGrowth, -0.75, " \u2300 %.1f%%" % (confdGrowth*100), ha='left', va='center', color=line.get_color(), bbox=dict(boxstyle='square,pad=0', fc='w', ec='none'))
# Middle right: Plot deaths by country
ax[3].set_title('Deaths (log scale)')
ax[3].invert_yaxis()
ax[3].get_yaxis().set_visible(False)
ax[3].xaxis.set_major_formatter(hrFormatter)
ax[3].axvline(x=0, ymin=0, ymax=len(countryNames), color='k', ls='-', lw='.8')
ax[3].margins(0.015)
ax[3].barh(countryNames, countryDeaths, color=alternatingColorsDeaths)
ax[3].set_xscale('log')
for i, v in enumerate(countryDeaths):
if v!=0:
ax[3].text(v, i, " %s " % humanReadable(v), ha='left', va='center', bbox=dict(boxstyle='square,pad=0', fc='w', ec='none'))
# Right: Plot CFR by country
ax[4].set_title('Crude case fatality rate (CFR)')
ax[4].invert_yaxis()
ax[4].get_yaxis().set_visible(False)
ax[4].xaxis.set_major_formatter(plticker.PercentFormatter(1.0))
ax[4].axvline(x=0, ymin=0, ymax=len(countryNames), color='k', ls='-', lw='.8')
ax[4].margins(0.015)
ax[4].barh(countryNames, countryCrudeCFR, color=alternatingColorsDeaths)
for i, v in enumerate(countryCrudeCFR):
if v!=0:
ax[4].text(v, i, " %.1f%% " % (v*100), ha='left', va='center', bbox=dict(boxstyle='square,pad=0', fc='w', ec='none'))
line =ax[4].axvline(x=deathsTotal/confdTotal, ymin=0, ymax=len(countryNames), ls="--")
#ax[4].text(deathsTotal/confdTotal, -0.75, " \u2300 %.1f%%" % (deathsTotal/confdTotal*100), ha='left', va='center', color=line.get_color(), bbox=dict(boxstyle='square,pad=0', fc='w', ec='none'))
plt.show()
These charts show the growth of confirmed cases by country. To make developments more comparable across countries, each country curve is shifted in time so that day 0 corresponds to the moment when that country exceeds a threshold number of confirmed cases (here=100).
For new cases, the curve for the US currently look the most worrying, continuing on a steeper trend than Italy, Spain, Germany and France which have flattened somewhat. Containment appears to be most effective in South Korea.
The picture for time-shifted deaths is similar. Italy, Spain, the US, France and the UK are on the most worrisome trajectory. Germany, the Netherlands and Belgium appear closer to the containment trajectory of China.
Italy shows the highest CFR. The UK and the Netherlands are following that trajectory; while there might be a small flattening in Spain and France. While Germany, Switzerland, South Korea and the US reeport markedly lower CFRs than the bulk of the western countries, the ratio of fatal outcomes in these countries continues to trend up slowly there. Germany in particular is tracking the Chinese CFR trajectory closely.
# Time-shifted countries plot
#############################
# Crop away starting values < n from the arrays
def startAtN(values, n):
while(len(values)>0 and values[0]<n):
values=values[1:]
return values
# Plot an exponential growth line with given start value and factor
def plotFactor(ax, start,factor,length):
xs=range(0, length)
ys=[start]
while(len(ys)<length):
ys.append(factor*ys[-1])
line, =ax.plot(xs, ys,"--k")
c=line.get_color()
ax.text(xs[-1], ys[-1], "%.1f%% growth" % (factor*100-100), color=c)
# Plot time-shifted data per country, setting y=0 where the country data set crosses the threshold
def plotTimeShiftedCountries(ax, df, refDf, validCountries, threshold, growth, yscale, label, xlabel, ylabel, yformatter):
ax.set_title(label, fontsize=12)
ax.set_xlabel(xlabel)
if ylabel!=None:
ax.set_ylabel(ylabel)
ax.set_yscale(yscale)
ax.yaxis.set_major_formatter(yformatter)
# Plot individual country curves
maxLen=0
for i, cty in enumerate(validCountries, start=0):
name=cty['Name']
days, daynr, values=getData(df, name)
if (refDf is None):
shiftedValues=startAtN(values, threshold)
else:
refDays, refDaynr, refValues=getData(refDf, name)
shiftedRefValues=startAtN(refValues, threshold)
shiftedValues=values[-len(shiftedRefValues):] if len(shiftedRefValues)>0 else []
if(len(shiftedValues)>0):
if(len(shiftedValues)>maxLen):
maxLen=len(shiftedValues)
line, =ax.plot(range(0, len(shiftedValues)), shiftedValues)
c=line.get_color()
ax.text(len(shiftedValues)-1, shiftedValues[-1], name, color=c)
# Plot the average growth line
#if growth!=0:
# plotFactor(ax,threshold, 1+growth, 3*maxLen//4)
threshold=100
fig, ax=plt.subplots(nrows=1, ncols=3, figsize=[15,8], constrained_layout=True)
fig.suptitle('Time-shifted country data as of %s' % today, fontsize="16")
plotTimeShiftedCountries(ax[0], confd, None, validCountriesForCharts, threshold, confdGrowth, 'log',
"Cumulative cases (log scale)",
"Days since country reached %s cum. cases" % humanReadable(threshold),
None, hrFormatter)
plotTimeShiftedCountries(ax[1], deaths, None, validCountriesForCharts, threshold, deathsGrowth, 'log',
"Cumulative deaths (log scale)",
"Days since country reached %s cum. deaths" % humanReadable(threshold),
None, hrFormatter)
plotTimeShiftedCountries(ax[2], deaths/confd, deaths, validCountriesForCharts, threshold, 0, 'linear',
"Crude CFR",
"Days since country reached %s deaths" % humanReadable(threshold),
None, plticker.PercentFormatter(1.0))
plt.show()
If ongoing mitigations do not materially change the course of the disease, one week from now, the global projection points towards 2.3-2.4m cases and 143-149k fatalities. This global projection is based on aggregating up country-level estimates for all countries, including countries with smaller case loads not shown in the country overview.
The US would have the highest number of cumulative cases of around 714k, followed by Spain around 195k, Italy around 185k as well as France and Germany around 145k. In terms of cumulated fatalities, the grim projected picture for the US remains at 30k, followed by Italy with 24k, Spain with 22k, France with 17k and the UK with 15k. Fingers crossed that social distancing is going to further reduce these projections.
# Function families to apply in curve fitting
#############################################
# Exponential fit function
def fitExp(x, a, b):
return a * np.exp(b*x)
# Generate a label for the exponential model
def fitExpLabeller(popt):
return "f(t)=%ge^(%gt)" % (s3(popt[0]), s3(popt[1]))
# Derivative of the exponential fit function
def fitExpDerivative(x, a, b):
return a * b * np.exp(b*x)
# Generate a label for the derivative of the exponential model
def fitExpDerivativeLabeller(popt):
return "f(t)=%ge^(%gt)" % (s3(popt[0]*popt[1]), s3(popt[1]))
# Sigmoid model for fitting
def fitSig(t, a, b, c):
return a/(1.0+np.exp(-b*t - c))
# Generate a label for the sigmoid model
def fitSigLabeller(popt):
return "f(t)=%g \u03c3(%gt%+g)" % (s3(popt[0]), s3(popt[1]), s3(popt[2]))
# Derivative of the sigmoid fit function
def fitSigDerivative(t, a, b, c):
s=fitSig(t,1,b,c)
return a*b*s*(1-s)
# Generate a label for the derivative of the sigmoid model
def fitSigDerivativeLabeller(popt):
return "f(t)=%g \u03c3'(%gt%+g)" % (s3(popt[0]*popt[1]), s3(popt[1]), s3(popt[2]) )
# Extended sigmoid fit function, with continued linear growth
def fitSigExt(t, a, b, c, n):
return fitSig(t,a,b,c) + n*np.log(1+np.exp(b*t+c))
# Generate a label for the extended sigmoid fit model
def fitSigExtLabeller(popt):
return "f(t)=%g \u03c3'(%gt%+g)\n%+g log(1+e^(%gt%+g))" % (s3(popt[0]), s3(-popt[1]), s3(-popt[2]), s3(popt[3]), s3(-popt[1]), s3(-popt[2]))
# Derivative of the extended sigmoid fit function, with continued flat tail
def fitSigExtDerivative(t, a, b, c, n):
s=fitSig(t,1,b,c)
return a*b*s*(1-s) + fitSig(t, n*b, b,c)
# Generate a label for the derivative of the extended sigmoid model
def fitSigExtDerivativeLabeller(popt):
return "f(t)=%g \u03c3'(%gt%+g)\n%+g \u03c3(same)" % (s3(popt[0]*popt[1]), s3(-popt[1]), s3(-popt[2]), s3(popt[3]), )
# Curve fitting helpers
#######################
# For a given curve fit, calculate the conf% confidence and prediction bands.
# Confidence is for the true value. Prediction is for future measured values, including noise
# Inspired by https://stats.stackexchange.com/questions/15423/how-to-compute-prediction-bands-for-non-linear-regression
def calculateConfidenceAndPredictionBands(pxs, xs, ys, f, popt, pcov, conf=0.95):
sumOfSquares=sum((ys-f(xs,*popt))**2)
degreesOfFreedom=len(xs)-len(popt)
alpha=1.0-conf
criticalT = stats.t.ppf(1.0 - alpha / 2.0, degreesOfFreedom)
pys=f(pxs, *popt)
lpb, lcb, ucb, upb=[], [], [], []
# Debugging: plot chart
#fig, ax=plt.subplots(figsize=[15, 4], nrows=1, ncols=1)
#ax.plot(xs, ys, color="k", ls=" ", marker='o', label='Data')
#ax.plot(pxs, pys, color="tab:blue", label="Fit")
#ax.set_yscale('log')
#plt.show()
#print("Start fitting with criticalT=%g and dof=%g" % (criticalT, degreesOfFreedom))
# for all predicted points
grad=np.array([0]*len(popt))
ptmp=popt.copy()
epsilon=1e-8
confidences=[]
predictions=[]
for px, py in zip(pxs, pys):
# calculate gradient for all parameter dimensions at this point
for i in range(len(popt)):
# Calculate numerical derivative of the best fit function w.r.t. parameter i
epsilon=1e-4
ptmp[i]=popt[i]-epsilon
yl=f(px, *ptmp)
ptmp[i]=popt[i]+epsilon
yh=f(px, *ptmp)
ptmp[i]=popt[i]
grad[i]=(yh-yl)/(2.0*epsilon)
# calculate variance of the best fit function based on the gradient and the covariance
c=grad.dot(pcov.dot(grad.T))
# compute confidence and prediction intervals at this point
if c<0: # avoid numerical stability issues
c=-c
confidence=criticalT*math.sqrt(c)
prediction=criticalT*math.sqrt(c+sumOfSquares/degreesOfFreedom)
confidences.append(confidence)
predictions.append(prediction)
lpb.append(py-prediction)
lcb.append(py-confidence)
ucb.append(py+confidence)
upb.append(py+prediction)
return lpb, lcb, pys, ucb, upb
# Fit country curves and generate summaries
###########################################
# Silently ignore optimize warnings when curve fitting
warnings.simplefilter("ignore", OptimizeWarning)
warnings.simplefilter("ignore", RuntimeWarning)
np.seterr(over='ignore')
# Prepare x axis and results for projections
extDayCount=7
px = np.linspace(0, len(confd.columns)-1+extDayCount, 3*(len(confd.columns)+extDayCount)) # resample to make curves smoother
firstDay=datetime.datetime.strptime(confd.columns[0],"%m/%d/%y").date()
pxlabels = [datetime.datetime.combine(firstDay,datetime.time(0,0,0))+datetime.timedelta(days=(d)) for d in px]
tmp=np.zeros((len(validCountries), len(px)))
newCasesFits, newCasesLpb, newCasesLcb, newCasesNom, newCasesUcb, newCasesUpb={}, tmp.copy(), tmp.copy(), tmp.copy(), tmp.copy(), tmp.copy()
cumCasesFits, cumCasesLpb, cumCasesLcb, cumCasesNom, cumCasesUcb, cumCasesUpb={}, tmp.copy(), tmp.copy(), tmp.copy(), tmp.copy(), tmp.copy()
newDeathsFits, newDeathsLpb, newDeathsLcb, newDeathsNom, newDeathsUcb, newDeathsUpb={}, tmp.copy(), tmp.copy(), tmp.copy(), tmp.copy(), tmp.copy()
cumDeathsFits, cumDeathsLpb, cumDeathsLcb, cumDeathsNom, cumDeathsUcb, cumDeathsUpb={}, tmp.copy(), tmp.copy(), tmp.copy(), tmp.copy(), tmp.copy()
tmp=None
# For all countries
for ci, cty in enumerate(validCountries): #enumerate([{'Name':'Germany'}]):
countryName=cty['Name']
# For both series of data, cases and deaths
seriesSets=[(confd, "Cases"),
(deaths, "Deaths")]
for df, seriesName in seriesSets:
xlabels, x, y=getData(df, countryName)
yd= diff(y)
n = len(yd)
if seriesName=="Deaths" and y[-1]<threshold/2: # Skip fits with insufficient data
continue
# For all fitting functions, exponential, sigmoid etc., find best fit
fitSets=[(0, fitExpDerivative, fitExpDerivativeLabeller, [10, 0.2], fitExp, fitExpLabeller ),
(1, fitSigDerivative, fitSigDerivativeLabeller, [max(yd)*3/2, 0.2, -10], fitSig, fitSigLabeller),
(2, fitSigExtDerivative, fitSigExtDerivativeLabeller, [max(yd)*3/2, 0.2, -10, 100], fitSigExt, fitSigExtLabeller)]
bestSeor, bestIndex, bestPopt, bestPcov=sys.float_info.max, None, [], []
sndbestSeor, sndbestIndex, sndbestPopt, sndbestPcov=sys.float_info.max, None, [], []
for index, f, fLabeller, p0, fInt, fIntLabeller in fitSets:
try:
# alpha=0.05
try:
# Standard error function first; gives best fit for last 2-3 weeks,
# although fits for the early days are poorer
popt, pcov = curve_fit(f, x, yd, p0)
except (RuntimeError, OverflowError, TypeError) as e:
# Modified poisson error with x^4. Deal with outliers for the last few
# days, which cause the fitting to fail with the standard error function.
popt, pcov = popt, pcov = curve_fit(f, x, yd, p0, sigma=[math.pow(max(theY,1.0), 1/4.0) for theY in yd], absolute_sigma=True)
# Small constant relative error: alpha*x. Performs worse for last 20 days
#popt, pcov = curve_fit(f, x, yd, p0, sigma=[alpha*theY+1 for theY in yd], absolute_sigma=True)
# Possion error: sqrt(y), inherent for all rate counting applications. Performs worse for last 20 days
#popt, pcov = curve_fit(f, x, yd, p0, sigma=[math.sqrt(theY+1) for theY in yd], absolute_sigma=True)
# Combined constant relative and poisson. Performs worse for last 20 days
#popt, pcov = curve_fit(f, x, yd, p0, sigma=[math.sqrt(theY+alpha*alpha*theY*theY+1) for theY in yd], absolute_sigma=True)
#r2 = 1.0-(sum((yd-f(x,*(popt)))**2)/((n-1.0)*np.var(yd,ddof=1)))
# pseudo-R2 for nonlinear fits, from https://stackoverflow.com/a/14530853
# Better use standard error of the estimate for a non-linear fit. Lower values are better
seor=math.sqrt(sum((yd-f(x, *(popt)))**2)/(n-len(popt)))
if abs(popt[1]>1): # PRIOR: we know the exponent is fairly small, use this to ignore absurd fits
continue
if len(popt)==4 and (popt[3]>popt[0]):# PRIOR: we know the plateau should be smaller than the peak, ignore absurd fits
continue
if len(popt)==4 and (popt[3]<0): # PRIOR: we know the plateau should be larger than zero
index, f, fLabeller, popt=1, fitSigDerivative, fitSigDerivativeLabeller, popt[:-1]
pcov=np.array([pcov[0][:-1], pcov[1][:-1], pcov[2][:-1] ])
if countryName=="Denmark" and seriesName=="Cases" and index>0: # Dirty fix for overly wide projection interval
continue # Should really use seor and the width of the confidence band together to pick a fit; not enough time now
# make this the new best result, if it exceeds the previous one by a threshold
# added cache in case an intermediate result was somewhat better, but the new one isn't much better
gamma=1.1
if seor*gamma<bestSeor and seor*gamma<sndbestSeor:
bestSeor, bestIndex, bestPopt, bestPcov=seor, index, popt, pcov
sndbestSeor=sys.float_info.max
elif seor*gamma<bestSeor:
if sndbestSeor<sys.float_info.max:
bestSeor, bestIndex, bestPopt, bestPcov=sndbestSeor, sndbestIndex, sndbestPopt, sndbestPcov
sndbestSeor, sndbestIndex, sndbestPopt, sndbestPcov=seor, index, popt, pcov
except (RuntimeError, OverflowError, TypeError) as e:
continue
seor, popt, pcov=bestSeor, bestPopt, bestPcov
if bestIndex!=None:
index, f, fLabeller, p0, fInt, fIntLabeller=fitSets[bestIndex]
else:
index, f, fLabeller, p0, fInt, fIntLabeller=0, None, None, [], None, None
# For both new and cumulative variants of each series
newOrCumSets=[(yd, f, fLabeller, "New"),
(y, fInt, fIntLabeller, "Cum.")]
for ys, f, fLabeller, newOrCum in newOrCumSets:
# Fit data
try:
if newOrCum=='Cum.': # Recalculate R2 as the stored R2 was for new cases, not cumulative
# r2 = 1.0-(sum((ys-f(x,*(popt)))**2)/((n-1.0)*np.var(ys,ddof=1)))
# pseudo-R2 for nonlinear fits, from https://stackoverflow.com/a/14530853
# Better use standard error of the estimate for a non-linear fit. Lower values are better
seor=math.sqrt(sum((ys-f(x, *(popt)))**2)/(n-len(popt)))
lpb, lcb, nom, ucb, upb=calculateConfidenceAndPredictionBands(px, x, ys, f, popt, pcov)
except (RuntimeError, OverflowError, TypeError) as e:
lpb, lcb, nom, ucb, upb=[math.nan], [math.nan], [math.nan], [math.nan], [math.nan],
# Store stats
if seriesName=="Cases":
if newOrCum=="New":
newCasesFits[countryName]=(f, fLabeller, popt, pcov, seor)
newCasesLpb[ci], newCasesLcb[ci], newCasesNom[ci], newCasesUcb[ci], newCasesUpb[ci]=lpb, lcb, nom, ucb, upb
else:
cumCasesFits[countryName]=(f, fLabeller, popt, pcov, seor)
cumCasesLpb[ci], cumCasesLcb[ci], cumCasesNom[ci], cumCasesUcb[ci], cumCasesUpb[ci]=lpb, lcb, nom, ucb, upb
else:
if newOrCum=="New":
newDeathsFits[countryName]=(f, fLabeller, popt, pcov, seor)
newDeathsLpb[ci], newDeathsLcb[ci], newDeathsNom[ci], newDeathsUcb[ci], newDeathsUpb[ci]=lpb, lcb, nom, ucb, upb
else:
cumDeathsFits[countryName]=(f, fLabeller, popt, pcov, seor)
cumDeathsLpb[ci], cumDeathsLcb[ci], cumDeathsNom[ci], cumDeathsUcb[ci], cumDeathsUpb[ci]=lpb, lcb, nom, ucb, upb
# Convert projection arrays to data frames, resorted in descending order of cumulative cases and reprojecting World bottom-up
def prepareDF(arr, idx, cols, reidx=None, nom=None, sign=1):
df=pd.DataFrame(arr, idx,cols)
if reidx is None:
df=df.sort_values(by=[cols[-1]], ascending=False)
else:
df=df.reindex(reidx)
if nom is None:
df.loc['World']=df.iloc[1:, :].sum(skipna=True)
else:
delta=df.iloc[1:, :] - nom.iloc[1:, :]
deltaSq=delta.pow(2.0)
world=deltaSq.sum(skipna=True)
worldSqrt=world.pow(0.5)*sign
df.loc['World']=nom.loc['World']+worldSqrt
return df
# Convert projection arrays to data frames, resorted in descending order of cumulative cases
validCountryNames=[x['Name'] for x in validCountries]
cumCasesNomDF=prepareDF(cumCasesNom, validCountryNames, pxlabels)
cumCasesLpbDF=prepareDF(cumCasesLpb, validCountryNames, pxlabels, cumCasesNomDF.index, cumCasesNomDF, -1)
cumCasesLcbDF=prepareDF(cumCasesLcb, validCountryNames, pxlabels, cumCasesNomDF.index, cumCasesNomDF, -1)
cumCasesUcbDF=prepareDF(cumCasesUcb, validCountryNames, pxlabels, cumCasesNomDF.index, cumCasesNomDF, 1)
cumCasesUpbDF=prepareDF(cumCasesUpb, validCountryNames, pxlabels, cumCasesNomDF.index, cumCasesNomDF, 1)
newCasesNomDF=prepareDF(newCasesNom, validCountryNames, pxlabels, cumCasesNomDF.index)
newCasesLpbDF=prepareDF(newCasesLpb, validCountryNames, pxlabels, cumCasesNomDF.index, newCasesNomDF, -1)
newCasesLcbDF=prepareDF(newCasesLcb, validCountryNames, pxlabels, cumCasesNomDF.index, newCasesNomDF, -1)
newCasesUcbDF=prepareDF(newCasesUcb, validCountryNames, pxlabels, cumCasesNomDF.index, newCasesNomDF, 1)
newCasesUpbDF=prepareDF(newCasesUpb, validCountryNames, pxlabels, cumCasesNomDF.index, newCasesNomDF, 1)
newDeathsNomDF=prepareDF(newDeathsNom, validCountryNames, pxlabels, cumCasesNomDF.index)
newDeathsLpbDF=prepareDF(newDeathsLpb, validCountryNames, pxlabels, cumCasesNomDF.index, newDeathsNomDF, -1)
newDeathsLcbDF=prepareDF(newDeathsLcb, validCountryNames, pxlabels, cumCasesNomDF.index, newDeathsNomDF, -1)
newDeathsUcbDF=prepareDF(newDeathsUcb, validCountryNames, pxlabels, cumCasesNomDF.index, newDeathsNomDF, 1)
newDeathsUpbDF=prepareDF(newDeathsUpb, validCountryNames, pxlabels, cumCasesNomDF.index, newDeathsNomDF, 1)
cumDeathsNomDF=prepareDF(cumDeathsNom, validCountryNames, pxlabels, cumCasesNomDF.index)
cumDeathsLpbDF=prepareDF(cumDeathsLpb, validCountryNames, pxlabels, cumCasesNomDF.index, cumDeathsNomDF, -1)
cumDeathsLcbDF=prepareDF(cumDeathsLcb, validCountryNames, pxlabels, cumCasesNomDF.index, cumDeathsNomDF, -1)
cumDeathsUcbDF=prepareDF(cumDeathsUcb, validCountryNames, pxlabels, cumCasesNomDF.index, cumDeathsNomDF, 1)
cumDeathsUpbDF=prepareDF(cumDeathsUpb, validCountryNames, pxlabels, cumCasesNomDF.index, cumDeathsNomDF, 1)
# Plot overview of country projections
######################################
fig, axs=plt.subplots(nrows=2, ncols=2, figsize=[15,16], constrained_layout=True)
fig.suptitle('Covid-19 country projections one week from %s (log scale, 95%% prediction range)' % today, fontsize="16")
low=0
high=max(cumCasesUpbDF.iloc[:,-1])
topK=len(validCountriesForCharts)
plotParams=[(axs[0][0], "Cum. cases (log scale)", cumCasesNomDF.iloc[:topK,-1], cumCasesLpbDF.iloc[:topK,-1], cumCasesUpbDF.iloc[:topK, -1], "tab:blue", "w"),
(axs[0][1], "Cum. deaths (log scale)", cumDeathsNomDF.iloc[:topK,-1], cumDeathsLpbDF.iloc[:topK,-1], cumDeathsUpbDF.iloc[:topK,-1], "darkred", "w"),
(axs[1][0], "New cases (log scale)", newCasesNomDF.iloc[:topK,-1], newCasesLpbDF.iloc[:topK,-1], newCasesUpbDF.iloc[:topK,-1], "tab:blue", "w"),
(axs[1][1], "New deaths (log scale)", newDeathsNomDF.iloc[:topK,-1], newDeathsLpbDF.iloc[:topK,-1], newDeathsUpbDF.iloc[:topK,-1], "darkred", "w"), ]
for ax, title, proj, errLow, errHigh, barColor, fontColor in plotParams:
ax.set_title(title)
ax.set_xscale('symlog')
ax.xaxis.set_major_formatter(hrFormatter)
ax.invert_yaxis()
ax.set_xlim(low, high)
ax.margins(0.015)
ax.barh(proj.index, proj, color=barColor,
xerr=(np.array(proj)-np.array(errLow), np.array(errHigh)-np.array(proj)) )
for j, v in enumerate(errLow):
if v>low:
ax.text(v, j+0.25, humanReadable(v), ha='right', va='center', bbox=dict(boxstyle='square,pad=0', fc='none', ec='none'), color=fontColor)
for j, v in enumerate(errHigh):
if v>low:
ax.text(v, j+0.25, humanReadable(v), ha='left', va='center', bbox=dict(boxstyle='square,pad=0', fc='w', ec='none'))
# then label midpoint value
for j, v in enumerate(proj):
if v>low:
ax.text(v, j-0.25, humanReadable(v), ha='left', va='center', bbox=dict(boxstyle='square,pad=0', fc='w', ec='none'))
plt.show()
Country projections are now based on fitting curves to the daily changes in cases and deaths. This removes a challenge with cumulative data: each cumulative data point is correlated with all previous data points. So fitting on the daily changes should result in better accuracy. These fits are transferred to the cumulative values by symbolic integration.
To project current trends, we try and fit three families of curves: the derivative of an exponential, which is itself exponential; the derivative of a sigmoid, and the derivative of a sigmoid plus a sigmoid to simulate constant terminal growth. We select the value with the lowest squared error. Such projections should be taken with a grain of salt, as both types of functions grow and diverge rapidly.
The overview chart now shows 95% prediction ranges for the values. That is, 95% of future values on the given date, including measurement noise, should fall within the given error bound. These bounds have tightened as we now use the full covariance matrix, including correlations between different parameters. Confidence ranges for the underlying future value, i.e. without noise, are even tighter. Those are shown on the country details charts.
The new global projection is based on a bottom-up aggregate of individual country projections. This should yield better accuracy particularly for large countries with emerging case loads. However, it also means that there is no easily expressed, compact function for the world projection. The world projection currently points towards a plateau in new infections for the coming week, as wave II impacted countries like Italy and the US continue to practice social distancing. However, and a wave III of new countries are going to drive up global numbers to a new peak one week from now.
Country projections are based on fitting curves to the daily changes in cases and deaths. Charts show both the 95% confidence intervals in blue shading, and 95% prediction intervals in blue dashes. The confidence interval means that the true value, without measurement noise, lies in that range. The prediction intervals mean that future data point measurements, including noise, will lie in that range.
It is noticeable that highly impacted countries seem to be getting social distancing right, aggressively reducing new cases after a peak. Some are reaching a lower plateau after the initial peak, e.g. South Korea. Others like Spain and Italy, seem to be entering an elevated plateau of new cases after the initial peak.
Note that passing the peak of new infections does not indicate the peak strain on healthcare systems is already behind us; also note this does not imply that social distancing can be relaxed. Without a reduction in physical contacts, the curves would soon resume exponential growth.
for countryName in cumCasesNomDF.index[:topK]:
fig, axs=plt.subplots(figsize=[15, 8], nrows=2, ncols=2, constrained_layout=True)
fig.suptitle('%s: Cases and deaths on %s with %d day prediction' % (countryName, today, extDayCount))
seriesSets=[(axs[0][0], axs[1][0], confd, "Cases", "tab:blue"),
(axs[0][1], axs[1][1], deaths, "Deaths", "tab:red")]
for ax1, ax2, df,seriesName, seriesColor in seriesSets:
xlabels, x, y=getData(df, countryName)
yd= diff(y)
n = len(yd)
newOrCumSets=[(ax1, y, "Cum."),
(ax2, yd, "New"), ]
for ax, ys, newOrCum in newOrCumSets:
if seriesName=="Cases":
if newOrCum=="New":
f, fLabeller, popt, pcov, seor=newCasesFits.get(countryName, (None, None, [], [], 0.))
lpb, lcb, nom, ucb, upb=newCasesLpbDF.loc[countryName], newCasesLcbDF.loc[countryName], newCasesNomDF.loc[countryName], newCasesUcbDF.loc[countryName], newCasesUpbDF.loc[countryName]
else:
f, fLabeller, popt, pcov, seor=cumCasesFits.get(countryName, (None, None, [], [], 0.))
lpb, lcb, nom, ucb, upb=cumCasesLpbDF.loc[countryName], cumCasesLcbDF.loc[countryName], cumCasesNomDF.loc[countryName], cumCasesUcbDF.loc[countryName], cumCasesUpbDF.loc[countryName]
else:
if newOrCum=="New":
f, fLabeller, popt, pcov, seor=newDeathsFits.get(countryName, (None, None, [], [], 0.))
lpb, lcb, nom, ucb, upb=newDeathsLpbDF.loc[countryName], newDeathsLcbDF.loc[countryName], newDeathsNomDF.loc[countryName], newDeathsUcbDF.loc[countryName], newDeathsUpbDF.loc[countryName]
else:
f, fLabeller, popt, pcov, seor=cumDeathsFits.get(countryName, (None, None, [], [], 0.))
lpb, lcb, nom, ucb, upb=cumDeathsLpbDF.loc[countryName], cumDeathsLcbDF.loc[countryName], cumDeathsNomDF.loc[countryName], cumDeathsUcbDF.loc[countryName], cumDeathsUpbDF.loc[countryName]
if not (f is None):
# plot the prediction band (95% confidence)
ax.plot(pxlabels, lpb, c=adjustLightness(seriesColor, 1.0), ls=':', label='95% prediction (future data)')
ax.plot(pxlabels, upb, c=adjustLightness(seriesColor, 1.0), ls=':')
# plot the confidence band (95%)
ax.fill_between(pxlabels, lcb, ucb, color=adjustLightness(seriesColor, 1.7), alpha=0.7)
fillBetweenLabel='95% confidence (true value)'
fillBetweenPatch= mpatches.Patch(color=adjustLightness(seriesColor, 1.7), label=fillBetweenLabel)
# plot the curve fit
if countryName=='World':
label="\nbottom-up aggregate"
else:
label=(", S=%.3f\n" % seor)+ fLabeller(popt)
ax.plot(pxlabels, nom, c=seriesColor, label=newOrCum+' '+seriesName+' '+countryName+ label)
# plot raw data
ax.scatter(xlabels, ys, s=15, label='Data', marker='o', c='k')
if not (f is None):
# Label the bands in reverse order, avoiding duplicate labels
if humanReadable(lpb[-1])!=humanReadable(nom[-1]):
labelLast(ax, pxlabels, lpb, c=seriesColor, va='top')
if humanReadable(upb[-1])!=humanReadable(nom[-1]):
labelLast(ax, pxlabels, upb, c=seriesColor, va='bottom')
if humanReadable(lcb[-1])!=humanReadable(nom[-1]) and humanReadable(lcb[-1])!=humanReadable(lpb[-1]):
labelLast(ax, pxlabels, lcb, c=seriesColor, va='top')
if humanReadable(ucb[-1])!=humanReadable(nom[-1]) and humanReadable(ucb[-1])!=humanReadable(upb[-1]):
labelLast(ax, pxlabels, ucb, c=seriesColor, va='bottom')
labelLast(ax, pxlabels, nom, c=seriesColor, weight='bold')
labelLast(ax, xlabels, ys, c='k', weight='bold')
# x axis formatting
locator = mdates.AutoDateLocator(minticks=2, maxticks=4)
formatter = mdates.ConciseDateFormatter(locator)
ax.xaxis.set_major_locator(locator)
ax.xaxis.set_major_formatter(formatter)
# y axis formatting
ax.set_yscale("linear")
ax.set_ylabel(newOrCum+' '+seriesName)
ax.yaxis.set_major_formatter(hrFormatter)
if not (f is None):
ax.set_ylim(1, 1.1*max(max(ys), max(ucb), max(upb))+10)
else:
ax.set_ylim(1, 1.1*max(ys)+10)
if not (f is None):
# fix legend order
handles, labels = ax.get_legend_handles_labels()
handles.append(fillBetweenPatch)
labels.append(fillBetweenLabel)
order = [1,3,0,2]
ax.legend([handles[idx] for idx in order],[labels[idx] for idx in order])
else:
ax.legend()
plt.show()
When the fitted curves for new cases and for new deaths both depart from the exponential, we can try and predict new deaths from new cases. Intuitively, this should be governed by the case fatality rate (CFR) and a time delay. As a formula, let's try and apply predictedNewDeaths(t)=CFR * newCases(t - delay)
.
inferredNames, inferredCFRs, inferredDelays=[], [], []
countryNamesForMatching=[]
for countryName in cumCasesNomDF.index[1:]:
cf, cfLabeller, cpopt, cpcov, cr2=newCasesFits.get(countryName, (None, None, [], [], 0.0))
df, dfLabeller, dpopt, dpcov, dr2=newDeathsFits.get(countryName, (None, None, [], [], 0.0))
if cf is None or df is None or cf==fitExpDerivative or df==fitExpDerivative:
continue
countryNamesForMatching.append(countryName)
fig, axs=plt.subplots(figsize=[15, 4*int((len(countryNamesForMatching)+2)/3)], nrows=int((len(countryNamesForMatching)+2)/3), ncols=3, constrained_layout=True)
fig.suptitle('New deaths vs new deaths computed from new cases at %s with %d day lookahead' % (today, extDayCount))
for i, countryName in enumerate(countryNamesForMatching):
ax=axs[int(i/3)][int(i%3)]
locator = mdates.AutoDateLocator(minticks=2, maxticks=4)
formatter = mdates.ConciseDateFormatter(locator)
ax.xaxis.set_major_locator(locator)
ax.xaxis.set_major_formatter(formatter)
cf, cfLabeller, cpopt, cpcov, cr2=newCasesFits.get(countryName, (None, None, [], [], 0.0))
df, dfLabeller, dpopt, dpcov, dr2=newDeathsFits.get(countryName, (None, None, [], [], 0.0))
xlabels, x, y=getData(confd, countryName)
yd= diff(y)
n = len(yd)
px = np.linspace(x[0], x[-1]+extDayCount, 5*(len(x)+extDayCount)) # resample to make curves smoother
pxlabels = [datetime.datetime.combine(xlabels[0],datetime.time(0,0,0))+datetime.timedelta(days=(d-x[0])) for d in px]
dpy = df(px, *(dpopt))
ax.plot(pxlabels, dpy, label="New deaths %s" % countryName, c="r")
def fitdf(t, a, b):
return a*cf(t-b, *(cpopt))
try:
popt, pcov =curve_fit(fitdf, px, dpy, [0.05, 10])
sqdiff = sum((dpy-fitdf(px,*(popt)))**2)
except (RuntimeError) as e:
ax.legend()
continue
if popt[1]<0: # PRIOR: deaths must come after cases, ignore nonsensical fits
ax.legend()
continue
inferredNames.append(countryName)
inferredCFRs.append(popt[0])
inferredDelays.append(popt[1])
dpyFromCases=fitdf(px, *(popt))
ax.plot(pxlabels, dpyFromCases, label="From new cases with S=%.f\n%g cases(t%+g)" % (sqdiff, popt[0], -popt[1]), c="tab:blue", ls="--")
ax.legend()
plt.show()
For the countries where data is available, inferred CFRs and delays range widely. Part of this can likely be attributed to a difference in testing intensity. Part of it may also be attributable to locally overwhelmed health systems, and/or general differences in health system capacity relative to population size.
fig, axs=plt.subplots(figsize=[8, 4], nrows=1, ncols=1, constrained_layout=True)
fig.suptitle('Inferred CFRs and delays by country as at %s with %d day lookahead' % (today, extDayCount))
axs.plot(inferredDelays, inferredCFRs, "bo")
axs.set_xlabel("Delay from new case to new death in days")
axs.set_ylabel("Inferred CFR")
for name, delay, cfr in zip(inferredNames, inferredDelays, inferredCFRs):
axs.annotate(name, (delay,cfr), (5,0), textcoords='offset pixels', ha='left', va="center", bbox=dict(boxstyle='square,pad=0', fc='w', ec='none'))
plt.show()
I have suspected for a while that there might be a weekday pattern to the data we see; particularly because Robert Koch Institute continues to reclassify a lot of German data for days. To test this hypothesis, let's calculate the percentage growth of new cases for each day, subtract the average for the prior week from this, and bin the growth rates by day of week. Here is what we get for the ten most impacted countries.
Weekday patterns are most apparent for reporting from the US, Spain, France and the UK. Italy, Germany and Iran are middle of the road. Weekday patterns are least apparent for Turkey, Belgium and China.
# Calculate daily difference in growth rate from prior seven days average
confdDeltaPercNorm=confdDeltaPerc.copy()
for i in range(len(confdDeltaPercNorm.columns)):
lower=max(0, i-7)
if i>0:
mean=confdDeltaPerc.iloc[:, lower:i].mean(axis=1)
confdDeltaPercNorm.iloc[:,i]=confdDeltaPerc.iloc[:,i]-mean
else:
confdDeltaPercNorm.iloc[:,i]=confdDeltaPerc.iloc[:,i]
# For each country, summarize by day of week and plot
labels=[x % 7 for x in range(len(confdDeltaPerc.columns))]
countryMedians=[]
# Group in rows of five countries
for ctygroup in range(1, len(validCountriesForCharts[:10]), 5):
fig, axs=plt.subplots(figsize=[15, 6], nrows=1, ncols=5, constrained_layout=True)
if ctygroup==1:
fig.suptitle('Growth rate deviation from prior seven day average by day of week as of %s' % (today))
for idx,cty in enumerate(validCountriesForCharts[ctygroup:ctygroup+5]):
# Plot by country
ax=axs[idx]
countryName=cty['Name']
ys=confdDeltaPercNorm.loc[countryName]
ax.plot(labels, ys, marker='o', ls='', c='k', label=countryName)
vals=[[], [], [], [], [], [], []]
medians=[0]*7
for l, y in zip(labels, ys):
vals[l].append(y)
for i in range(len(vals)):
medians[i]=np.median(vals[i])
countryMedians.append(medians)
ax.plot(labels[:7], medians, ls='-', c='tab:blue', label="Median")
#for i in range(7):
# print(labels[i], medians[i])
# ax.annotate(medians[i], (labels[i],medians[i]), (2,0), textcoords='offset pixels', ha='left', va='center', c=c, weight='normal', bbox=dict(boxstyle='square,pad=0', fc='w', ec='none'))
ax.yaxis.set_major_formatter(plticker.PercentFormatter(1.0))
ax.set_ylim(-0.5,0.5)
ax.legend()
plt.show()
# Plot summary
fig, ax=plt.subplots(figsize=[15, 6], nrows=1, ncols=1, constrained_layout=True)
for cty, med in zip(validCountriesForCharts, countryMedians):
# Plot by country
countryName=cty['Name']
ax.plot(labels[:7], med, ls='-', label=countryName)
ax.yaxis.set_major_formatter(plticker.PercentFormatter(1.0))
ax.legend()
plt.show()
Return to daily series overview. Data source: Johns Hopkins. For questions and comments, please reach out to me on LinkedIn or Twitter.